منابع مشابه
Complex intersection bodies
We introduce complex intersection bodies and show that their properties and applications are similar to those of their real counterparts. In particular, we generalize Busemann’s theorem to the complex case by proving that complex intersection bodies of symmetric complex convex bodies are also convex. Other results include stability in the complex Busemann-Petty problem for arbitrary measures an...
متن کاملInequalities for dual quermassintegrals of mixed intersection bodies
In this paper, we first introduce a new concept of dual quermassintegral sum function of two star bodies and establish Minkowski's type inequality for dual quermassintegral sum of mixed intersection bodies, which is a general form of the Minkowski inequality for mixed intersection bodies. Then, we give the Aleksandrov– Fenchel inequality and the Brunn–Minkowski inequality for mixed intersection...
متن کاملInequalities for Mixed Complex Projection Bodies
Complex projection bodies were introduced by Abardia and Bernig, recently. In this paper some geometric inequalities for mixed complex projection bodies which are analogs of inequalities for mixed real projection bodies are established.
متن کاملIntersection Bodies and Valuations
All GL (n) covariant star-body-valued valuations on convex polytopes are completely classified. It is shown that there is a unique nontrivial such valuation. This valuation turns out to be the so-called “intersection operator”—an operator that played a critical role in the solution of the Busemann-Petty problem. Introduction. A function Z defined on the set K of convex bodies (that is, of conve...
متن کاملVolume difference inequalities for the projection and intersection bodies
In this paper, we introduce a new concept of volumes difference function of the projection and intersection bodies. Following this, we establish the Minkowski and Brunn-Minkowski inequalities for volumes difference function of the projection and intersection bodies.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Inequalities & Applications
سال: 2015
ISSN: 1331-4343
DOI: 10.7153/mia-18-31